

(Dipartimento di Ingegneria dell'Informazione, delle Infrastrutture e dell'Energia Sostenibile)

Le Comunicazioni Olografiche: la nuova sfida della Telemedicina del futuro

Questo lavoro è stato supportato dal progetto iCare Programma Operativo FESR Regione Calabria 2014/2020, Asse I –
Azione 1.5.1 CUP J32C14000100007

Il gruppo di lavoro

Prof. Ing. Giuseppe Araniti

Dr. Ing. Giuseppe Marrara

Ing. Angelo Tropeano

Dr. Ing. Chiara Suraci

Descrizione

Telemedicina

Reti 5G Private

Olografia

Il progetto iCare ha costituito il **fondamento tecnologico** di questo lavoro, permettendo e facilitando l'acquisizione e lo sviluppo sperimentale di una rete cellulare di quinta generazione (5G) privata <u>standalone</u> e di software e tecnologie utili all'elaborazione e visualizzazione dinamica e in real-time di ologrammi. Questo ha permesso di realizzare, presso la nostra Università, una infrastruttura di ricerca denominata **Advanced eHealth Lab**, a disposizione di ricercatori ed esperti di diversi settori per lo sviluppo e la sperimentazione di nuovi paradigmi e tecnologie.

La necessità di innovare e migliorare gli attuali servizi di telemedicina rappresenta invece il fondamento

clinico del nostro lavoro.

Tutti i personaggi e gli oggetti presenti sono **ologrammi** realizzati e visualizzati utilizzando un palco olografico finanziato dal progetto iCare.

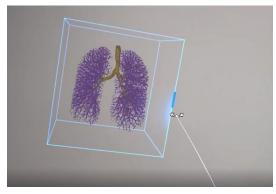
https://player.vimeo.com/video
/889931737

Obiettivi e destinatari del lavoro

L'obiettivo principale del nostro lavoro consiste nell'utilizzo di una rete 5G privata, installata nel laboratorio Advanced eHealth Lab, per trasmettere, visualizzare e gestire immagini e oggetti olografici.

L'aspetto **multidisciplinare** risiede nell'integrazione di diverse discipline e tecnologie per il raggiungimento degli obiettivi. Essi, infatti, hanno richiesto approfondite competenze di:

- Ingegneria delle Telecomunicazioni, per l'implementazione e l'utilizzo della rete 5G;
- Ingegneria Informatica, per l'utilizzo dei software per l'elaborazione delle immagini;
- Tecnologie di Imaging, per la consultazione e la gestione delle immagini mediche in formato DICOM;
- Viewer Olografici (XR-Extended Reality, AR-Augmented Reality), per la visualizzazione dei volumi olografici per mezzo di dispositivi indossabili e non.


Allo stesso modo, gli esperti e professionisti di questi settori rappresentano anche i **destinatari del lavoro**, insieme a tutti i professionisti del settore sanitario (medici, radiologi, ecc.) e non solo ma anche ricercatori e accademici.

/IIC 2024 WARDS

Risultati

 Trasferimento, gestione e visualizzazione su rete 5G tramite dispositivi XR, di volumi olografici ottenuti elaborando immagini tomografiche in formato DICOM; servizio utilizzabile per i futuri moduli di Telemedicina.

Utilizzo del palco olografico per la visualizzazione e la rotazione di volumi olografici in movimento, ottenuti «renderizzando» immagini tomografiche «triggerate» in formato DICOM; servizio utilizzabile per i futuri moduli di Telemedicina.

Telepresenza olografica real-time tramite rete 5G e palco olografio; servizio utilizzabile per i futuri moduli di Telemedicina.

Giuseppe Araniti araniti@unirc.it

Professore Associato di Telecomunicazioni

Università degli Studi Mediterranea di Reggio Calabria, Dipartimento DIIES

