

University of Warwick

OPTIMISING CLASSIFICATION OF CONGESTIVE HEART FAILURE USING FEATURE WEIGHT IMPORTANCE CORRELATION

AIC associazione italiana ingegneri clinici

The Team

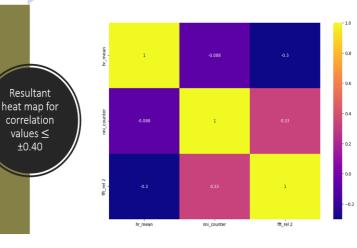
Iyabosola Busola Oronti Muhammad Salman Haleem

• Leandro Pecchia

Thomas Popham

associazione italiana ingegneri clinici

Description

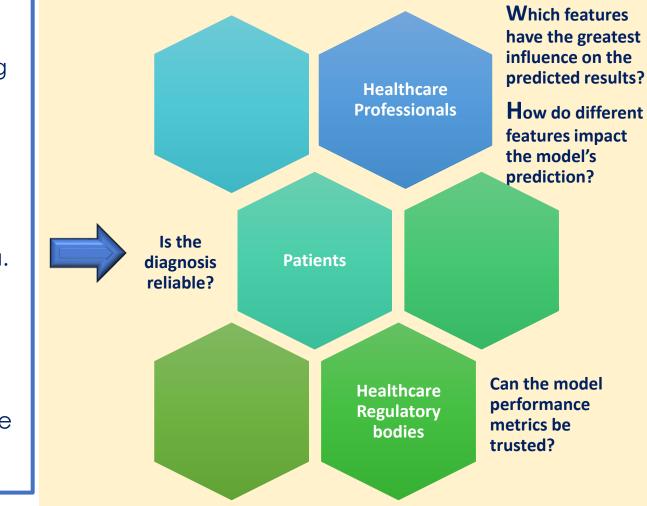

Feature engineering pipeline

Selection of 10 most important features according to 14 different classifiers. Pooling of selected features and importance score for further analysis. Weight appropriation to features based on frequency of occurrence and mean importance score. Features subjected to correlation analysis in an iterative manner and values examined using heat maps.

Features with correlation values greater than the selected CIT knocked off.

Frequency table of selected classifiers

SUMMARY REPORT									
<i>S/N</i>	Feature name	Frequency	Average		S/N	Feature name	Frequency	Average	
		of	importance score				of	importance score	
		occurrence	across classifiers				occurrence	across classifiers	
1.	hr_mean	8	4.0542		17.	nni_min	1	0.037009	
2.	nni_mean	7	1.6348		18.	hr_std	1	0.048487	
3.	nni_counter	5	2.8315		19.	pnn20	1	0.013626	
4.	nni_max	4	0.0389		20.	fft_peak 0	1	9	
5.	fft_rel 2	3	2.3525		21.	lomb_abs 0	1	7	
б.	hr_max	3	1.4047		22.	ar_rel 1	1	2	
7.	tri_index	3	1.0068		23.	sd_ratio	1	0.032949	
8.	lomb_total	3	0.6920		24.	sdnn	1	0.066783	
9.	lomb_log 1	3	0.0476		25.	ar_abs 2	1	0.033391	
10.	fft_norm 0	3	0.0428		26.	lomb_norm 1	1	0.011130	
11.	fft_rel 0	3	0.0376		27.	pnn50	1	0.010881	
12.	hr_min	2	0.0479		28.	lomb_abs 1	1	0.005974	
13.	fft_norm 1	2	0.1159		29.	nni_diff_max	1	0.005093	
14.	fft_peak 1	2	0.0372		30.	ar_rel 2	1	0.04	
15.	sdann	2	0.0153		31.	sdsd	1	0.028307	
16.	ar_norm 0	2	0.0264		32.	dfa_alpha1	1	0.026311	


Resultant heatmap after applying correlation iteration threshold (CIT) of ≤0.40

Objectives and recipients of the work

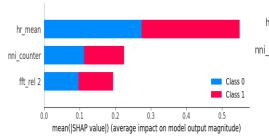
Objectives:


- To develop a novel method for selecting the optimal set of input features for classifying the presence of congestive heart failure (CHF) using long-term ECG data.
- To ensure model transparency and trustworthiness by building interpretability and explainability into the model.

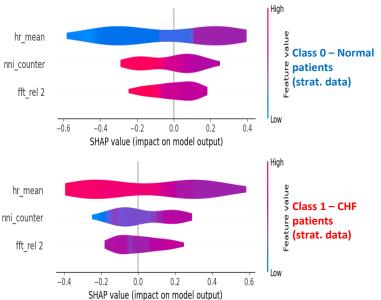
associazione italiana ingegneri clinici

Results

Best performing model – implemented with feature weight importance correlation (FWIC): (a) Confusion matrix; (b) performance metrics; (c) ROC AUC


Accuracy: 1.00 Accuracy: 1.00		precision	recall	f1-score	support	Accuracy: 0.94 Accuracy: 1.00
Accuracy: 1.00	Normal	1.00	1.00	1.00	8	Accuracy: 0.88
Accuracy: 1.00 Accuracy: 1.00	CHF	1.00	1.00	1.00	8	Accuracy: 1.00 Accuracy: 1.00
Accuracy: 1.00						Accuracy: 1.00
Accuracy: 1.00	accuracy			1.00	16	Accuracy: 1.00
Accuracy: 1.00 Accuracy: 1.00	macro avg	1.00	1.00	1.00	16	Accuracy: 1.00 Accuracy: 0.94
Accuracy: 1.00	weighted avg	1.00	1.00	1.00	16	Accuracy: 1.00

associazione


ingegneri clinici

italiana

Accuracy of best model (left) tested under data imbalance condition compared to that of 2nd best model using 10-fold stratified shuffle split cross-validation. Same performance metrics. Best model outputs 100% accuracy.

Bar plot of global feature importances.

Violin plots: Positive SHAP values in a plot indicate that the input feature has a positive impact on the prediction and vice versa.

Iyabosola Busola Oronti Iyabosola.Oronti@warwick.ac.uk Doctoral Researcher, School of Engineering, University of Warwick

